Drinking water disinfection byproducts: review and approach to toxicity evaluation.

نویسنده

  • G A Boorman
چکیده

There is widespread potential for human exposure to disinfection byproducts (DBPs) in drinking water because everyone drinks, bathes, cooks, and cleans with water. The need for clean and safe water led the U.S. Congress to pass the Safe Drinking Water Act more than 20 years ago in 1974. In 1976, chloroform, a trihalomethane (THM) and a principal DBP, was shown to be carcinogenic in rodents. This prompted the U.S. Environmental Protection Agency (U.S. EPA) in 1979 to develop a drinking water rule that would provide guidance on the levels of THMs allowed in drinking water. Further concern was raised by epidemiology studies suggesting a weak association between the consumption of chlorinated drinking water and the occurrence of bladder, colon, and rectal cancer. In 1992 the U.S. EPA initiated a negotiated rulemaking to evaluate the need for additional controls for microbial pathogens and DBPs. The goal was to develop an approach that would reduce the level of exposure from disinfectants and DBPs without undermining the control of microbial pathogens. The product of these deliberations was a proposed stage 1 DBP rule. It was agreed that additional information was necessary on how to optimize the use of disinfectants while maintaining control of pathogens before further controls to reduce exposure beyond stage 1 were warranted. In response to this need, the U.S. EPA developed a 5-year research plan to support the development of the longer term rules to control microbial pathogens and DBPs. A considerable body of toxicologic data has been developed on DBPs that occur in the drinking water, but the main emphasis has been on THMs. Given the complexity of the problem and the need for additional data to support the drinking water DBP rules, the U.S. EPA, the National Institute of Environmental Health Sciences, and the U.S. Army are working together to develop a comprehensive biologic and mechanistic DBP database. Selected DBPs will be tested using 2-year toxicity and carcinogenicity studies in standard rodent models; transgenic mouse models and small fish models; in vitro mechanistic and toxicokinetic studies; and reproductive, immunotoxicity, and developmental studies. The goal is to create a toxicity database that reflects a wide range of DBPs resulting from different disinfection practices. This paper describes the approach developed by these agencies to provide the information needed to make scientifically based regulatory decisions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review.

Disinfection for the supply of safe drinking water forms a variety of known and unknown byproducts through reactions between the disinfectants and natural organic matter. Chronic exposure to disinfection byproducts through the ingestion of drinking water, inhalation and dermal contact during regular indoor activities (e.g., showering, bathing, cooking) may pose cancer and non-cancer risks to hu...

متن کامل

Ultraviolet Light

Ultraviolet light (UV) is a recognized disinfection alternative to chlorine and ozone in many applications from drinking water to wastewater treatment. UV provides effective disinfection without production of problematic disinfection byproducts. Information on the mechanism and application of UV for drinking water disinfection is presented. Advantages and disadvantages of the technique are disc...

متن کامل

Trihalomethane formation potential in drinking water from Minab Steghlal dam to water distribution network in Bandar Abbas, Iran

Introduction: Organic matters enter to drinking water from a variety of sources, but one of the major sources of these compounds in aqueous solution can be decomposed plant and microbial residues. Chlorination is the most common method for water disinfection, the free chlorine in the water reacts with natural organic compounds and form disinfection byproducts. One of the dangerous byproducts is...

متن کامل

Chlorination of oxybenzone: Kinetics, transformation, disinfection byproducts formation, and genotoxicity changes.

UV filters are a kind of emerging contaminant, and their transformation behavior in water treatment processes has aroused great concern. In particular, toxic products might be produced during reaction with disinfectants during the disinfection process. As one of the most widely used UV filters, oxybenzone has received significant attention, because its transformation and toxicity changes during...

متن کامل

Predictive QSAR Models for the Toxicity of Disinfection Byproducts.

Several hundred disinfection byproducts (DBPs) in drinking water have been identified, and are known to have potentially adverse health effects. There are toxicological data gaps for most DBPs, and the predictive method may provide an effective way to address this. The development of an in-silico model of toxicology endpoints of DBPs is rarely studied. The main aim of the present study is to de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 107  شماره 

صفحات  -

تاریخ انتشار 1999